
2008  

2008 ACM ICPC 
Southeast USA Regional  

Programming Contest 
 

25 October, 2008 

 

PROBLEMS 
A:  Series / Parallel Resistor Circuits ................ .................................................1 

B:  The Heart of the Country ........................... ....................................................3 

C: Lawrence of Arabia ................................. .......................................................5 

D: Shoring Up the Levees .............................. ....................................................7 

E: Combination Lock ................................... .......................................................9 

F: Fred’s Lotto Tickets............................... .......................................................11 

G: A No-Win Situation................................. ......................................................12 

H: A Walk in the Park................................. .......................................................14 

I: Teleport Out! ...................................... ............................................................16 

J:  Worms.............................................. ..............................................................18 

 

Hosted by: 

Florida Institute of Technology 
Armstrong Atlantic State University 

University of South Alabama



2008  

2008 ACM ICPC Southeast USA Regional Programming Contest 

 Page 1 of 19                                                                                                        25 October 2008 

A:  Series / Parallel Resistor Circuits 
A series / parallel resistor circuit is shown below. 

 
The resistance value is given next to each resistor. Connection points (wires 
connecting two or more resistors together, are denoted by an uppercase letter. A 
and Z are reserved for the names of the connection points which are the 
endpoints of the circuit. Our goal is to calculate the equivalent resistance of the 
circuit (i.e., the equivalent resistance between A and Z). 

Within the circuit, a resistor can be specified by a triple consisting of the 
connection points at either endpoint, and the resistance. Resistor 9 could be 
specified as either (C, D, 9) or (D, C, 9). A circuit specification is the set of all 
resistor specifications. 

A pair of resistors is in series if one of either of their endpoints have a common 
connection point that is not use by any other resistor (e.g., resistor 6 and 9, are 
both connected to C, which is not connected to anything else). Two series 
resistors can be replaced by an equivalent single resistor whose resistance is the 
sum of the replaced resistors (15, in the previous example). A pair of resistors is 
in parallel if both their endpoints have common connection points (e.g., resistors 
3 and 10 above, both are connected to R and D). Two parallel resistors can be 
replaced by an equivalent single resistor whose resistance is the inverse of the 
sum of the inverses of the two resistors ( (1/3 + 1/10)-1 = 2.307692, in the 
previous example). 

 
The equivalent resistance of a well-formed series-parallel resistor 1circuit can be 
determined by successively replacing a series or parallel resistor pair by the 
single equivalent resistor, until only one is left.  If this technique fails, the circuit is 
not well-formed. 

                                            
1
 A Wheatstone Bridge circuit, shown on the right,  

is not a well-formed series-parallel circuit. 



2008  

2008 ACM ICPC Southeast USA Regional Programming Contest 

 Page 2 of 19                                                                                                        25 October 2008 

Input  
There will be multiple circuit specifications.  The first input line for each circuit 
specification is an integer N (N <= 1000), being the number of resistors in the 
circuit. This is followed by N lines, each being a resistor specification in the form: 
X Y r, where X and Y are uppercase characters, and r is a positive integer 
resistance (r < 100). The equivalent resistance is guaranteed never to be 
greater than 100. A line with a single 0 terminates the input. 

Output 
For each circuit, if the circuit is well-formed and reduces to a single equivalent 
resistance between A and Z, print the equivalent resistance of the circuit from A 
to Z, rounded to (and displayed to) 3 decimal places. If the circuit is not well 
formed, or if there is no equivalent resistance between A and Z, simply print the 
number -1.000. There should be no blank lines between outputs. 

Sample Input 
8 
N R 2 
D R 3 
R N 2 
R D 10 
Z R 7 
C D 9 
N C 6 
A N 4 
2 
A Z 3 
Z A 10 
2 
P A 6 
P Z 9 
5 
A B 1 
B Z 4 
A C 8 
C Z 19 
B C 12 
0 

Sample Output 
11.945 
2.308 
15.000 
-1.000 



2008  

2008 ACM ICPC Southeast USA Regional Programming Contest 

 Page 3 of 19                                                                                                        25 October 2008 

B:  The Heart of the Country 
The nation of Graphia is at war. The neighboring nations have for long watched 
in jealousy as Graphia erected prosperous cities and connected them with a 
network of highways. Now they want a piece of the pie.  

Graphia consists of several cities, connected by highways. Graphian terrain is 
rough, so the only way to move between the cities is along the highways. Each 
city has a certain number of troops quartered there. Graphia’s military command 
knows that it will require a certain number of troops, K, to defend any city. They 
can defend a city with the troops stationed there, supported by the troops in any 
other city which is directly connected with a highway, with no cities in between. 
Any troops further away than that simply cannot get there in time. They also 
know that their enemies will onlyattack one city at a time – so the troops in a city 
can be used to defend that city, as well as any of its neighbors. However, if a city 
can’t be defended, then the military command must assume that the troops 
quartered in that city will be captured, and cannot aid in the defense of Graphia. 
In the case below, suppose K=10. City C might seem well defended, but it will 
eventually fall. 

 
Graphia's leadership wants to identify the Heart of their country – the largest 
possible group of cities that can mutually defend each other, even if all of the 
other cities fall.  

More formally, a city is defensible if it can draw a total of at least K troops from 
itself, and from cities directly adjacent to it. A set of cities is defensible if every 
city in it is defensible, using only troops from itself and adjacent cities in that set. 
The Heart of the country is the largest possible defensible set of cities - that is, 
no other defensible set of cities has more cities in it. 

 



2008  

2008 ACM ICPC Southeast USA Regional Programming Contest 

 Page 4 of 19                                                                                                        25 October 2008 

Input 
There will be several data sets. Each set begins with two integers, N and K, 
where N is the number of cities (3 <= N <= 1000), and K is the number of 
troops required to defend a city. The cities are numbered 0 through N-1.  

On the next N lines are descriptions of the cities, starting with city 0. Each of the 
city description lines begins with an integer T, indicating the number of troops 
quartered in that city (0 <= T <= 10000). This is followed by an integer M, 
indicating the number of highways going out of that city, and then M integers, 
indicating the cities those highways go to. No two highways will go from and to 
the same cities, so every city in each list will be unique. No highway will loop 
from a city back to the same city. The highways go both ways, so that if city I is 
in city J’s list, then it’s guaranteed that city J will be in city I’s list in the input. 
The input will end with a line with two space-separated 0’s. 

Output 
For each data set, print two integers on a single line: The number of cities in the 
heart of the country, and the number of troops in the heart of the country. Print a 
space between the integers. There should be no blank lines between outputs. 

Sample Input 
4 900 
100 2 1 2 
200 2 0 3 
500 2 0 3 
1000 2 1 2 
4 900 
100 3 1 2 3 
200 3 0 3 2 
500 3 1 3 0 
1000 3 2 1 0 
0 0 

Sample Output 
3 1700 
4 1800 
 

 



2008  

2008 ACM ICPC Southeast USA Regional Programming Contest 

 Page 5 of 19                                                                                                        25 October 2008 

C:  Lawrence of Arabia 
T. E. Lawrence was a controversial figure during World War I. He was a British 
officer, who served in the Arabian theater. He led a group of Arab nationals in 
guerilla strikes against the Ottoman Empire. His primary targets were the 
railroads. A highly fictionalized version of his exploits was presented in the 
blockbuster movie, “Lawrence of Arabia”. 

You are to write a program to help Lawrence figure out how to best use his 
limited resources. You have some information from British Intelligence. First, the 
rail line is completely linear – there are no branches, no spurs. Next, British 
Intelligence has assigned a Strategic Value to each depot – an integer from 1 to 
5. But, a depot is of no use on its own, it only has value if it is connected to other 
depots. The Strategic Value of the entire railroad is calculated by adding up the 
products of the Strategic Values for every pair of depots that are connected, 
directly or indirectly, by the rail line. Consider this railroad: 

4 25 1
 

Its Strategic Value is 4*5 + 4*1 + 4*2 + 5*1 + 5*2 + 1*2 = 49. 

Now, suppose that Lawrence only has enough resources for one attack. He 
cannot attack the depots themselves – they’re too well defended. He must attack 
the rail line between depots, in the middle of the desert. Consider what would 
happen if Lawrence attacked this rail line right in the middle: 

4 25 1
 

The Strategic Value of the remaining railroad is 4*5 + 1*2 = 22. But, suppose 
Lawrence attacks between the 4 and 5 depots: 

4 25 1
 

The Strategic Value of the remaining railroad is 5*1 + 5*2 + 1*2 = 17. This 
is Lawrence’s best option.  

Given a description of a railroad and the number of attacks that Lawrence can 
perform, figure out the smallest Strategic Value that he can achieve for that 
railroad. 



2008  

2008 ACM ICPC Southeast USA Regional Programming Contest 

 Page 6 of 19                                                                                                        25 October 2008 

The Input 
There will be several data sets. Each data set will begin with a line with two 
integers, N and M. N is the number of depots on the railroad (1 <= N <= 500), 
and M is the number of attacks Lawrence has resources for (0 <= M < N). On 
the next line will be N integers, each from 1 to 5, indicating the Strategic Value of 
each depot in order. End of input will be marked by a line with two space-
separated 0’s. 

The Output 
For each data set, print a single integer, indicating the smallest Strategic Value 
for the railroad that Lawrence can achieve with his attacks. Print each integer on 
its own line. There should be no blank lines between outputs. 

Sample Input 
4 1 
4 5 1 2 
4 2 
4 5 1 2 
0 0 

Sample Output 
17 
2 



2008  

2008 ACM ICPC Southeast USA Regional Programming Contest 

 Page 7 of 19                                                                                                        25 October 2008 

D:  Shoring Up the Levees 
The tiny country of Waterlogged is protected by a series of levees that form a 
quadrilateral as shown below: 

 

 

 

 

 

 

 

 

 

 

The quadrilateral is defined by four vertices.  The levees partition the country into 
four quadrants.  Each quadrant is identified by a pair of vertices representing the 
outside edge of that quadrant.  For example, Quadrant 1 shown below is defined 
by the points (x1,y1) and (x2,y2). 

 

 

 

 

 

 

 

 

 

 

It happens very often that the country of Waterlogged becomes flooded, and the 
levees need to be reinforced, but their country is poor and they have limited 
resources. They would like to be able to reinforce those levees that encompass 
the largest area first, then the next largest second, then the next largest third, 
and the smallest area fourth.  

(x1,y1) 

(x2,y2) 

(x3,y3) 

(x4,y4) 

(x1,y1) 

(x2,y2) 

(x3,y3) 

(x4,y4) 

Quad 1 

Quad 2 
Quad 3 

Quad 4 



2008  

2008 ACM ICPC Southeast USA Regional Programming Contest 

 Page 8 of 19                                                                                                        25 October 2008 

Help Waterlogged identify which quadrants are the largest, and the length of the 
levees around them 

Input 
There will be several sets of input. Each set will consist of eight real numbers, on 
a single line. Those numbers will represent, in order: 

 X1 Y1 X2 Y2 X3 Y3 X4 Y4 
The four points are guaranteed to form a convex quadrilateral when taken in 
order – that is, there will be no concavities, and no lines crossing. Every number 
will be in the range from -1000.0 to 1000.0 inclusive. No Quadrant will have an 
area or a perimeter smaller than 0.001. End of the input will be a line with eight 
0.0’s. 

Output 
For each input set, print a single line with eight floating point numbers. These 
represent the areas and perimeters of the four Quadrants, like this: 

 A1 P1 A2 P2 A3 P3 A4 P4 
Print them in order from largest area to smallest – so A1 is the largest area. If two 
Quadrants have the same area when rounded to 3 decimal places, output the 
one with the largest perimeter first. Print all values with 3 decimal places of 
precision (rounded). Print spaces between numbers. Do not print any blank lines 
between outputs. 

Sample Input 
1 2 1 5 5 2 2 0 
3.5 2.2 4.8 -9.6 -1.2 -4.4 -8.9 12.4 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Sample Output 
5.100 11.459 3.400 9.045 0.900 6.659 0.600 4.876 
44.548 38.972 21.982 25.997 20.342 38.374 10.038 19.043 



2008  

2008 ACM ICPC Southeast USA Regional Programming Contest 

 Page 9 of 19                                                                                                        25 October 2008 

E:  Combination Lock 
A combination lock consists of a 
circular dial, which can be turned 
(clockwise or counterclockwise) 
and is embedded into the "fixed" 
part of the lock. The dial has N 
evenly spaced "ticks". The ticks 
are numbered from 0 to N-1, 
increasing in the clockwise 
direction. The fixed part of the 
lock has a "mark" which always 
"points to" a particular tick on the 
dial. Of course, the mark points 
to different ticks as the dial is 
turned.  

The lock comes with three code numbers T1, T2, T3. These are non-negative 
integers and each of them is less than N. No two of the three are the same. 

The lock is opened in three stages of operations: 

1. Turn the dial clockwise exactly two full revolutions, and continue to turn it 
clockwise until the mark points to tick T1. 

2. Turn the dial one full revolution counterclockwise and continue to turn it 
counterclockwise until the mark points to tick T2. 

3. Turn the dial clockwise until the mark points to tick T3. The lock should 
now open. 

You must find the maximum possible number of ticks the dial must be turned in 
order to open the lock. The number of ticks turned is defined to be the sum of the 
ticks turned in the three stages outlined above, and is always positive regardless 
of direction. 

Input 
The input file consists of a number of test cases, one test case per line. Each line 
of the input file contains four integers: N, T1, T2, T3, in this order, separated by 
blank spaces. The integer N is a multiple of 5, 25 <= N <= 100. The numbers 
T1, T2 and T3 satisfy the constraints stated under the description above. The 
input will be terminated by a line with four blank-separated 0’s. 



2008  

2008 ACM ICPC Southeast USA Regional Programming Contest 

 Page 10 of 19                                                                                                        25 October 2008 

Output 
For each test case, print the maximum possible number of ticks the dial must be 
turned in order to open the lock. Print each on its own line. There should be no 
blank lines between outputs. 

Sample Input 
80 20 40 50 
80 10 79 12 
0 0 0 0 

Sample Output 
409 
455 
  



2008  

2008 ACM ICPC Southeast USA Regional Programming Contest 

 Page 11 of 19                                                                                                        25 October 2008 

F:  Fred’s Lotto Tickets 
Fred likes to play the lotto. Whenever he does, he buys lots of tickets. Each ticket 
has 6 unique numbers in the range from 1 to 49, inclusive. Fred likes to “Cover 
all his bases.” By that, he means that he likes for each set of lottery tickets to 
contain every number from 1 to 49, at least once, on some ticket. Write a 
program to help Fred see if his tickets “Cover all the bases.” 

Input 
The input file consists of a number of test cases. Each case starts with an integer 
N (1 <= N <= 100), indicating the number of tickets Fred has purchased. On 
the next N lines are the tickets, one per line. Each ticket will have exactly 6 
integers, and all of them will be in the range from 1 to 49 inclusive. No ticket will 
have duplicate numbers, but the numbers on a ticket may appear in any order. 
The input ends with a line containing only a 0. 

Output 
Print a list of responses for the input sets, one per line. Print the word Yes if 
every number from 1 to 49 inclusive appears in some lottery ticket in the set, and 
No otherwise. Print these words exactly as they are shown. Do not print any 
blank lines between outputs. 

Sample Input 
1 
1 2 3 4 5 6 
9 
1 2 3 4 5 6 
10 9 8 7 12 11 
13 14 15 16 17 18 
19 20 21 22 23 24 
25 26 27 28 29 30 
31 32 33 34 35 36 
37 38 39 40 41 42 
43 44 45 46 47 48 
49 19 34 27 25 13 
0 

Sample Output 
No 
Yes 



2008  

2008 ACM ICPC Southeast USA Regional Programming Contest 

 Page 12 of 19                                                                                                        25 October 2008 

G:  A No-Win Situation 
Consider a simple variation of the card game Blackjack.  In this game, a single 
player plays against the dealer.  The game uses a standard deck of cards, where 
numbered cards are worth the number of points on the card for the cards 
numbered 2 to 10, 10 points for the face cards (King, Queen, and Jack) and 
either 1 or 11 points for the Aces.   

The dealer deals the first card in the deck to the player, the second to the dealer, 
the third to the player, and the fourth to the dealer.  The player then may continue 
to draw cards until s/he decides that the total is as close as possible to 21 and 
stops voluntarily or until s/he goes over 21.  If the player goes over 21, the player 
loses.  Then the dealer must draw cards until s/he reaches 17 or more points 
(with aces counting as 11 when possible).  If the dealer goes over 21, the dealer 
loses.  If neither of them goes over 21, the winner is the one who comes as close 
as possible to 21.  If the player and the dealer have the same total, the player 
wins.  

For example, suppose the first cards in the deck are Queen, 6, 4, 9, and 10.  On 
the initial deal, the player will receive Queen and 4 (for a total of 14) and the 
dealer will receive 6 and 9 (for a total of 15).  If the player does not select a card, 
the dealer will have to draw (because the dealer's total is less than 17) and will 
draw the 10, going over, so the player will win.  But if the player draws a card (the 
10), the player's total will be 24, so the player will lose. 

In some situations, it is impossible for the player to win.  Consider the case when 
the cards in the deck are: 10, 3, 4, King, 3, 5.  The player will be dealt the cards 
10 and 4.  The dealer will have 3 and King.  The table below illustrates what 
happens for each number of cards the player might draw: 

 Cards drawn Player's hand (Points) Dealer's hand (P oints)  

 0 10, 4 (14) 3, King, 3, 5 (21) 

 1 10, 4, 3 (17) 3, King, 5 (18) 

 2 10, 4, 3, 5 (22) 3, King (13) 

No matter how many cards the player draws, the player cannot win. 

In this problem, you will analyze decks to determine if they lead to a situation in 
which the player cannot win. 

 



2008  

2008 ACM ICPC Southeast USA Regional Programming Contest 

 Page 13 of 19                                                                                                        25 October 2008 

Input 
The input to the program will be one or more decks.  Each deck will be 
represented by a string, on its own line. Each deck will consist of at least 4 cards. 
where a card is either an integer d, 2 <= d <= 9, representing a numbered card, 
or one of the letters A, K, Q, J or T, representing Ace, King, Queen, Jack, or Ten, 
respectively. The letters will be in upper case. There will be no other characters 
on a line. In particular, there will be no spaces. There will always be enough 
cards to try all valid draws.  End of input is indicated by the word JOKER, alone 
on a line. 

Output 
Print a list of responses for the input sets, one per line. Print the word Yes if there 
is a number of cards the player can draw and win, and No if there is no way for 
the player to win. Print these words exactly as they are shown. Do not print any 
blank lines between outputs. 

Sample input 
Q649T 
T34K35 
AA2T34A5KKQAJ 
JOKER 

Sample Output 
Yes 
No 
Yes 



2008  

2008 ACM ICPC Southeast USA Regional Programming Contest 

 Page 14 of 19                                                                                                        25 October 2008 

H:  A Walk in the Park 
You are responsible for inspecting the trees located in a park, to make sure they 
remain healthy.  The location of each tree is given to you as a point in the two-
dimensional plane, distinct from that of every other tree.  Due to recently-
replanted grass, you are only allowed to walk through the park along a collection 
of paths. Each path is described by an infinite-length horizontal or vertical line in 
the two-dimensional plane.  No tree lies on any path. 

You are concerned that it may not be possible to view all the trees in the park 
from the paths. In particular, a tree is visible only if you can view it by standing on 
some path while facing in a direction perpendicular to that path; there must be no 
intervening tree that obstructs your view. Given the geometrical configuration of 
the park, please report the number of visible trees. 

Input 
There will be multiple input sets. For each input set, the first line will contain two 
integers, N and M, (0 < N,M <= 100000), separated by a space. N is the 
number of trees, and M is the number of paths.  

The next N lines each contain two space-separated integers, X and Y, specifying 
the coordinates of a tree. X and Y may be any 32-bit integers. 

The next M lines each describe a path (a vertical or horizontal line). They have 
the form x=K or y=K, with no spaces. K may be any 32-bit integer. x and y will be 
lower case.  

End of the input is signified by a line with two space-separated 0’s. 

Output  
For each input set, print a single line containing one integer, specifying the 
number of visible trees. There should be no blank lines between outputs. 



2008  

2008 ACM ICPC Southeast USA Regional Programming Contest 

 Page 15 of 19                                                                                                        25 October 2008 

Sample Input 
6 3 
-1 3 
4 2 
6 2 
6 3 
6 4 
4 3 
x=0 
y=-1 
y=5 
1 2 
2 3 
x=5 
y=5 
0 0 
 
Sample Output  

5 
1 



2008  

2008 ACM ICPC Southeast USA Regional Programming Contest 

 Page 16 of 19                                                                                                        25 October 2008 

I:  Teleport Out! 
You are in a rectangular maze and you would like to leave the maze as quickly 
as possible. The maze is a rectangular grid of square locations. Some locations 
are blocked. Some other locations are exits. If you arrive at an exit location, you 
can immediately leave the maze.  

You may walk one step at a time, onto one of the locations adjacent to your 
current location. Two locations are adjacent if they share a side. That is, you can 
only move one step North, South, East or West. Of course, you cannot step off 
the maze, and you cannot step onto a blocked location. 

In addition, at any step, you may choose to use your teleport device. This device 
will send you to a random non-blocked location inside the maze with uniform 
probability (including, possibly, the one where you currently are standing!). If the 
device happens to send you onto a spot that is also an exit, then you leave the 
maze immediately. Hooray! 

The only way to leave the maze is by moving onto an exit (either by teleport or 
walking), you may not walk off the boundary of the maze. Write a program to 
calculate the expected number of steps you need in order to leave the maze. 
Assume that you would choose your actions (movements and using teleport 
device) optimally in order to minimize the expected number of steps to leave the 
maze. Using the teleport device is considered one step. 

Input 
There will be multiple test cases. Each test case starts with a line containing two 
positive integers R and C (R <= 200, C <= 200). Then, the next R lines each 
contain C characters, representing the locations of the maze. The characters will 
be one of the following: 

E: represents an exit, there will be at least one E in every maze. 

Y: represents your initial location, there will be exactly one Y in every maze. 

X: represents a blocked location. 

.: represents an empty space. 

You may move/teleport onto any location that is marked E, Y or .. 

The end of input is marked by a line with two space-separated 0’s. 

Output 
For each test case, print one line containing the minimum expected number of 
steps required to leave the maze, given that you make your choices optimally to 
minimize this value. Print your result to 3 decimal places. Do not print any blank 
lines between outputs. 



2008  

2008 ACM ICPC Southeast USA Regional Programming Contest 

 Page 17 of 19                                                                                                        25 October 2008 

 

Sample Input 
2 1 
E 
Y 
2 2 
E. 
.Y 
3 3 
EX. 
XX. 
..Y 
3 3 
EXY 
.X. 
... 
0 0 

Sample Output 
1.000 
2.000 
6.000 
3.250 



2008  

2008 ACM ICPC Southeast USA Regional Programming Contest 

 Page 18 of 19                                                                                                        25 October 2008 

J:   Worms 
Biologists are studying a certain, interesting kind of worm. Each worm can be 
seen as a line of cells of different types. When a worm is born, it only consists of 
a single cell.  Every day, exactly 1 cell of the entire worm will grow and change 
into 2 cells.  It is rather easy to determine the age of any such worm, since it’s 
simply one less than the number of cells the worm has.   

During a worm’s growth, a cell does not change into any 2 arbitrary cells; each 
worm has a set of “growth rules” (encoded in its DNA) that it obeys. A growth rule 
can be expressed as A→→→→BC, where A, B and C are uppercase letters (with letters 
A-T), representing different types of the worm’s cells.  The rule A→→→→BC means that 
in one day, any single cell A can be grown into the 2 adjacent cells BC, in that 
order.  Note  that the rule I→→→→JK is different from the rule I→→→→KJ.  Different worms 
may have a different set of growth rules.   

The worms have now thrown the scientists for a loop. Due to some unknown 
reason, some worms have mutated into a new kind of specimen. This new kind 
of worm has the exact same properties, except that during its growth, multiple 
parts of its body can grow at the same time.  That is, every day any (at least one, 
at most all) of its cells can grow; each cell that grows will grow into exactly 2 cells 
(obeying growth rules similar to their older cousins). 

As a result of the mutation, it is no longer trivial to determine the age of a worm. 
In fact, the exact age of some worms cannot be determined. As a simple 
example, if a worm has growth rules: A→→→→BC, B→→→→AC, C→→→→AB, and the worm’s 
current cell structure is ACAB, the worm can be either 2 or 3 days old (A→→→→BC→→→→ 
ACAB, or A→→→→BC→→→→ACC→→→→ACAB).  Your task is to find out the youngest possible 
age of any given mutated worm. 

Input 
There will be multiple worms for examination in the input. Each worm’s data set 
begins with an integer N (1 <= N <= 80), the number of growth rules.  The next 
N lines each contain 3 uppercase letters (with letters A-T), representing a growth 
rule for the current worm. The 1st cell can grow into (and be replaced by) the 2nd 
and 3rd cells, in order, during the growth process. That is, the line: 

 ABC 
means A→→→→BC is a growth rule for the current worm. 

The next (and last) line of each worm’s data set contains a string of uppercase 
letters (with letters A-T). This line represents the current cell structure of the 
worm.  Every worm in the input will have at least 1 and at most 50 cells. 

The last worm will be followed by a line with a single 0. 



2008  

2008 ACM ICPC Southeast USA Regional Programming Contest 

 Page 19 of 19                                                                                                        25 October 2008 

Output 
For each worm, if the worm can be grown into the given cell sequence with the 
given growth rule set (starting with any arbitrary single cell), then print the 
minimum age, in days, of the worm, as an integer on its own line.  If the worm 
cannot be grown into the given cell sequence with the given rule set (starting with 
any arbitrary single cell), then simply print the number -1 on its own line. Print no 
blank lines between outputs. 

Sample Input 
3 
ABC 
BAC 
CAB 
ACAB 
1 
AAA 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
2 
PAA 
AAA 
AAAAAAAAAAAAAAAP 
1 
BAB 
AAAAAAB 
0 

Sample Output 
2 
6 
-1 
6 


